PARTI

GULAR MOM

1 ANGULAR MOMENTUM OF A PARTICLE ABOUT A POINT

ANGULAR MOMENTUM OF A RIGID BODY ROTATING ABOUT A FIXED AXIS

$$L = I_{\omega}$$

Here, I is the moment of inertia of the rigid body about axis.

3 CONSERVATION OF ANGULAR MOMENTUM

The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur.

Since
$$\tau_{net} = \frac{d\vec{l}}{dt}$$

. Now if,
$$\overrightarrow{\tau_{net}} = 0$$
, then $\frac{\overrightarrow{dL}}{dt} = 0$,

$$\frac{\overrightarrow{dL}}{dt} = 0$$
,

so that L = constant.

4 ANGULAR IMPULSE

The angular impulse of a torque in a given time interval is defined as

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

UNIFORM PURE ROLLING

Pure rolling means no relative motion (or no slipping at point of contact between two bodies.)

$$V_P = V_Q$$

$$V - R\omega = 0$$

OF

$$V = R\omega$$

If VP > Vo or V > Ro, the motion is said to be forward slipping and if

V_P < V_Q < Rω , the motion is said to be backward slipping.

The condition of pure rolling on a stationary ground is, $a = R_0$

1 PURE ROLLING WHEN FORCE F ACT ON A BODY

Suppose a force F is applied at a distance x above the centre of a rigid body of radius R, mass M and moment of inertia CMR² about an axis passing through the centre of mass. Applied force F can produces by itself a linear acceleration a and an angular acceleration α .

a = liner acceleration, α = angular acceleration from linear motion

From rotational motion: Fx - fR = I a

$$a = \frac{F(R + X)}{MR(C + 1)}$$
, $f = \frac{F(x - RC)}{R(C + 1)}$

2 PURE ROLLING ON A INCLINED PLANS

A rigid body of radius R, and mass m is released at rest from height h on the incline whose inclination with horizontal is θ and assume that friciton is sufficient for pure rolling then,

$$a = \alpha R$$
 and $v = R \omega$

ω = Angular Velocity

 α = Angular Acceleration

Linear Acceleration,

$$a = \frac{g \sin \theta}{1 + C}$$

C = Center of Mass

So, body which have low value of C have greater acceleration.

TOPPLING

Torque about E

Balancing Torque at E

Torque about W

Balancing Torque at W

$$Fb + N(a - x) = mga$$

if
$$x = a$$

